Received 28 July 2004

Accepted 25 August 2004

Online 4 September 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.024 wR factor = 0.064 Data-to-parameter ratio = 33.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

tert-Butylammonium dihydrogenarsenate

The title compound, $(C_4H_{12}N)[H_2AsO_4]$, contains a network of *tert*-butylammonium cations and dihydrogenarsenate anions $[d_{av}(As-O) = 1.682 (2) \text{ Å}]$. The crystal packing involves $N-H\cdots O [d_{av}(H\cdots O) = 1.96 \text{ Å}, \theta_{av}(N-H\cdots O) =$ 169° and $d_{av}(N\cdots O) = 2.837 (3) \text{ Å}]$ and $O-H\cdots O$ $[d_{av}(H\cdots O) = 1.68 \text{ Å}, \theta_{av}(O-H\cdots O) = 169^{\circ}$ and $d_{av}(O\cdots O)$ Å] hydrogen bonds, resulting in a layered structure.

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated amine (di)hydrogen arsenates (Lee & Harrison, 2003a,b,c).

The $[H_2AsO_4]^-$ dihydrogenarsenate group in (I) shows its normal tetrahedral geometry $[d_{av}(As-O) = 1.682 (2) \text{ Å}]$, with the protonated As1-O3 and As1-O4 vertices showing their expected lengthening relative to the unprotonated As-O bonds, which have formal partial double-bond character (Table 1). The *tert*-butylammonium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I) interact by means of a network of cation-to-anion $N-H\cdots O$ and anion-to-anion $O-H\cdots O$ hydrogen bonds (Table 2). The $[H_2AsO_4]^-$ units are linked into polymeric chains propagating along [010] by way of inversion-generated pairs of $O-H\cdots O$ bonds, alternately involving $O3-H1\cdots O1$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

The asymmetric unit of (I) (50% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and the hydrogen bond is indicated by a dashed line. C-H H atoms have been omitted for clarity.

Figure 2

Detail of a hydrogen-bonded dihydrogenarsenate/tert-butylammonium sheet in (I). Colour key: [H₂AsO₄]⁻ tetrahedra green, O atoms red, H atoms grey, C atoms blue, N atoms green (all radii arbitrary). The H...O portions of the O-H···O and N-H···O hydrogen bonds are highlighted in yellow and orange, respectively. Symmetry codes as in Table 2; additionally, (v) x,y - 1,z; (vi) x, 1 + y, z.

and O4-H2...O1 links (Fig. 2). This results in every [H₂AsO₄]⁻ tetrahedron in the chain making one hydrogen bond to each of its neighbours and accepting one hydrogen bond from each neighbour. The As···Asⁱ (via O3-H1···O1ⁱ) and As···Asⁱⁱ (*via* O4-H2···O1ⁱⁱ) separations are 4.3002 (4) and 4.2662 (3) Å, respectively (see Table 2 for symmetry codes). Similar hydrogen-bonded chains of $[H_2AsO_4]^-$ anions have been seen in piperidinum dihydrogenarsenate, (C₅H₁₂N)[H₂AsO₄] (Lee & Harrison, 2003b), although in this case they are generated by a 2_1 screw axis.

As shown in Table 2, the organic species interacts with the dihydrogenarsenate chains by way of three N-H···O hydrogen bonds $[d_{av}(H \cdots O) = 1.96 \text{ Å}, \theta_{av}(N - H \cdots O) = 169^{\circ}]$ and $d_{av}(N \cdots O) = 2.837 (3) \text{ Å}$, such that each *tert*-butylammonium cation cross-links a dihydrogenarsenate chain to its neighbour by forming two hydrogen bonds to one chain, and one to the other. This results in neutral (101) layers (Fig. 3) of stoichiometry $(C_4H_{12}N)[H_2AsO_4]$, which interact with each other by van der Waals forces.

Experimental

An aqueous tert-butylamine solution (10 ml of 0.5 M) was added to a H_3AsO_4 solution (10 ml of 0.5 M), resulting in a clear solution. A mass of plate-shaped and rod-like crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$(C_4H_{12}N)[H_2AsO_4]$	$D_x = 1.633 \text{ Mg m}^{-3}$
$M_r = 215.08$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3025
a = 9.7364 (5) Å	reflections
b = 6.3254 (3) Å	$\theta = 2.4 - 32.4^{\circ}$
c = 14.2606 (8) Å	$\mu = 3.85 \text{ mm}^{-1}$
$\beta = 94.864 \ (1)^{\circ}$	T = 293 (2) K
V = 875.10 (8) Å ³	Bar, colourless
Z = 4	$0.55 \times 0.15 \times 0.05 \text{ mm}$

Figure 3 Projection of (I) onto (010). The colour key is as in Fig. 2.

Data collection

Bruker SMART1000 CCD diffractometer	3165 independent reflections 1807 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$
Absorption correction: multi-scan	$\theta_{max} = 32.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -10 \rightarrow 14$
$T_{\rm min} = 0.226, T_{\rm max} = 0.831$	$k = -7 \rightarrow 9$
8742 measured reflections	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.0332P)^2]$
$wR(F^2) = 0.064$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.88	$(\Delta/\sigma)_{\rm max} = 0.001$
3165 reflections	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
95 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

3165 reflections 95 parameters

Table 1

Selected bond distances (Å).

As1-O2	1.6412 (13)	As1-O3	1.7061 (13)
As1-O1	1.6687 (13)	As1-O4	1.7101 (14)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$03 - H1 \cdots O1^{i}$	0.97	1.62	2.5752 (19)	166
$04 - H2 \cdots O1^{ii}$	0.94	1.74	2.6763 (19)	172
$N1 - H3 \cdots O2$	0.89	1.92	2.801 (2)	168
$N1 - H4 \cdots O2^{iii}$	0.89	1.88	2.765 (2)	173
$N1 - H5 \cdots O3^{iv}$	0.89	2.07	2.944 (2)	166

Symmetry codes: (i) -x, -y, 1-z; (ii) -x, 1-y, 1-z; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z.$

The O-H H atoms were found in difference maps and refined by riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in calculated positions [d(C-H) = 0.96 Å and d(N-H) = 0.89 Å] and refined as riding, with the rigid NH₃ or CH₃ groups allowed to freely rotate about the bond joining the atoms in question to atom C1. The constraint $U_{iso}(H) =$ $1.2U_{eq}$ (O or N parent atom) or $1.5U_{eq}$ (methyl C parent atom) was applied as appropriate.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565. Lee, C. & Harrison, W. T. A. (2003*a*). Acta Cryst. E**59**, m739–m741.
- Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.
- Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.
- Shape Software (1999). ATOMS. Shape Software, 525 Hidden Valley Road, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.